## Testing High Precision Space Receivers versus LightSquared Interference



Session B2: Spectrum and Interference Issues

ION ITM January 2012

Stephan Esterhuizen, Dmitry Turbiner, Dave Stowers, Lawrence Young

> Jet Propulsion Lab California Institute of Technology

## The Spectrum as seen by a passive GPS antenna



- Expected interference effects
  - Intermodulation
  - Saturation
  - Raising in-band noise floor
- Consequences on GPS tracking performance
  - Decrease in SNR → Increased observables scatter
  - Decreased ability to acquire and track weak signals

[Diagram indicating GPS antenna + frontend, showing signal and noise powers collected.
Conducted test needs to recreate the same levels to be realistic]



# Conducted test: Let's recreate what the antenna sees

#### Overview of conducted test setup



#### **Signal Generation**



- Don't neglect the broadband noise floor of the signal generators → use Lightsquared filters [xxx dBc/Hz]
- Verify modulated
   LightSquared signal
   powers on a spectrum
   analyzer with the
   channel power function
- Verify output signal power of GPS simulator



#### Importance of controlling the input thermal noise floor



- Should be <300K to be realistic. Why: To report realistic interference susceptibility
- Noise floor: Set by 50 Ohm resistor at ~300K
- Use directional couplers
- Verify the GPS noise floor stays at 300K in the presence of high-powered Lightsquared signals (watch out for intermod effects in test equipment!)

### Results (Conducted and Radiated)



- 1-channel Test (Saturation),
- 2-channel Test (Intermodulation)
- [Table comparing the 3 tests]



Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.

#### Conducted test conclusions



- Intermodulation is real
  - Any mitigation techniques must take it into account
- Must get rid of LightSquared power before the first amplifier.
- For space-borne GPS instruments, we need 40dB of rejection at the LightSquared frequencies BEFORE the first amplifier (LNA).

#### Mitigation: pre-LNA Filter



- Requirements
  - Rejection of Lightsquared signals
  - Passband insertion loss
  - Group delay performance (Delay is the main observable of a GPS receiver)
- Implications (table)
  - Many stages: effect on
- Note: Difficult filter to build



- Why does this matter?
- Group delay stability over environmental changes (temperature)
- Flat over passband
- Stable over temperature
- Flat over expected doppler space [show simulations]
- Stable delay between GPS L1/L2/L5 frequencies (needed for TEC measurement)

### How to meet these group delay requirements



- Low group delay: Why?
  - Temperature effects on filter
- In the past, precision GPS receivers used wideband filters [reference Ed Power's paper, diagrams]
- Adding close in rejection requirements of the LSQ signals complicates the filter implementation
  - High rejection, temperature stability and low insertion loss seem to imply an exotic filter design.

## Conclusion: How to test any mitigation solution

- Measure susceptibility to interfering signals with a conducted test
- Measure new system temperature
- Measure delay performance (over temperature, over doppler, and between GPS L1/L2/L5 frequencies)